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A method of determining the stress intensity factors (SIF) in plane 
problems of the theory of elasticity for regions with corner points iS 
proposed. The case in which the corner points can be reached from 
infinity by a contour situated outside the region, was investigated in 
/l/. 

When analysing the strength of a body it is sufficient (within the framework of the model 
of brittle fracture) to have available the asymptotic expression for the stresses in the 
neighbourhood of non-singular points of the boundary. Of course, the asymptotic form can 
be extracted from the solution of the boundary-value problem in the neighbourhood of such 
points, but it is clear that the construction of sufficiently reliable solutions in these 
regions will meet with considerable difficulties /2/. It is therefore important to obtain 
the asymptotic form without involving the direct solution of the boundary-value problem. 

We know from the general theory of boundary-value problems for elliptic-type equations 
in regions with corner points /3/, that near the corner points the solution (as far as the 
problems of the theory of elasticity are concerned the discussion concerns the displacements) 
can be represented in the form of sums of an infinitely differentiable function and an 
asymptotic series, each term of which represents a solution of a h~~eneous boundary-value 
problem for a wedge, with the same aperture angle as the corner point. Their multipliers 
are determined by the configuration of the region and the boundary conditions. The correspond- 
ing solutions for the plane problem of the theory of elasticity were obtained using polar 
coordinates /4/ and the apparatus of analytic functions /5/. Such solutions form a denumerable 
set. In problems with a physical content the solutions leading to unlimited energy are 
rejected. In problems of the theory of elasticity the most interesting solutions are those 
leading to unbounded stresses (there are, at most, two such solutions depending on the 
magnitude of the angle and form of the boundary conditions) and determining the SIF K, and 
AI,. 

In problems where the boundary conditions have the same form on both sides of the corner 
point, it can be asserted (provided that the polar angle is measured from the bisectrix) 
that one solution corresponds to a symmetrical distribution of the stresses (it gives the 
coefficient X1), and the other to an antisymmetrical distribution [giving the coefficient ii,,). 

Let an elastic body occupy the region I) with boundary S, containing at least one corner 
point, and let 2d be the angle-between the semitangents in one of them tin which we require 
to find the SIF). Stresses F(p) are applied to the contour and we denote by U(P) the 
solution required (the displacements are U(p) and the stresses are o(p)). 

Let us place the region D in the plane of the complex variable in such a manner that the 
corner point coincides with the zero, and the bisectrix of the angle coincides with the 
positive part of the real axis. This implies that the Kolosov-Muskhelishvili potentials 

zz ne~~dth?~ro: 
corresponding to the solution C (P) will have the following asymptotic 

'p (z) - Cz", $ (z) - AC& 
(1) 

and the constants h and A will be given by the equations (for the symmetrical case) 

sin 2ha + Lsin 2a = 0, A = --cm 2ha - hces2a (2) 

The constant C is expressed in terms of the coefficient gr and is to be determined. 
As we said before, we must have the solution of Eq.(2) within the range O<h( f. Let us 
assume that such a solution exists, and denote it by & and A,. 

The formulas for the asymptotic forms of the displacements and stresses of the solution 
required U(P) are, in polar coordinates, as follows: 
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Note that 
plane state of 
connecting the 

the constant x=3-4v for plane deformation and z = 3 -v/(1 +v) for the 
stress (v is Poisson's ratio). The above formulas establish the relation 
constant C with the coefficient Kr (KI is the multiplier accompanying the 
_ _n component oe) for u = u. 

In order to determine the SIF, it was suggested in /6-a/ that the solution with unlimited 
energy should be used, which we excluded from our discussion. Let us assume that we require 
to determine the SIF for the asymptotic expression with index 1-i. The structure of Eq. (2) 
implies that the value --hi will also be a solution, and here the value of A will change 
(we shall denote it by A-1). Let us write the solution obtained in complex form 

9-i (z) = 211, *_, (2) = A_,z-'s (4) 

We shall denote by U*(P) any solution of the boundary-value problem of the theory of 
elasticity for the region D with the asymptotic form (4) (henceforth, we shall denote all 
quantities referring to this solution by an asterisk). 

In order to simplify our arguments, we shall assume that parts of the contour adjacent 
to the corner point are sections of sgraight lines of arbitrarily short length. We draw a 
circle of sufficiently small radius s with centre at zero (appearing on the rectilinear 
segments), and eliminate from region D the points lying inside this circle. The Somigliana 
identity is applicable to the solution U(p) required and to the auxiliary solution U* lp) 
introduced here, in the remaining region. The corresponding integral along the arc of the 
circle has the form 

% 
(u,u,* + Z,~ZQ* - q*u, - ~240) r d0 (5) 

We will represent the displacement and stresses using the asymptotic expressions (If, 
(3) and (4). The integrals of the products of asymptotic expressions are calculated in 
explicit farm (every term is a product of homogeneous functions). The remaining integrals 
have the order of smallness of E and therefore, passing to the limit in the Somigliana 
formula, we arrive at the required relation 

CB = s [u* (4) ‘GU (4 - u (q) KU* Ml AS 
s 

6) 

where B is the integral shown above (the factor C must be taken outside the integral), and 
T, is the stress operator. We note that T,U (q) = F (q) are given boundary conditions. 

In /i', 8/ a formula of the form (6) was used and a solution expressed in terms of 
asymptotic forms only was used as the solution U* (4) (generally speaking, the above papers 
dealt with mixed problems which did not lead to splitting into the symmetric and non-symmetric 
asymptotic forms). From formula [6) it follows that we must have available the displacements 
for the initial boundary-value problem. Since the displacements can be determined with 
greater accuracy than the stresses, this implies that the proposed approach will be more 
effective than that involving the extraction of the SIF from the stress field in the neighbour- 
hood of the corner point. 

We note that the asymptotic form (4) can only be used in the case when the corner point 
can be reached from infinity along a contour situated completely outside the region D. The 
fact is, that functions of the form 9 (where h) is fractional) are not unique over the 
whole plane, and in order to find a single-valued branch it is necessary to construct a cut 
joining the zero point with the point at infinity. 

The above constraint can be removed by using the solution of the problem of the theory 
of elasticity which has a singularity of the required type at one of its corner points. Such 
a solution has been constructed * and formula (6) was used to obtain solutions of some 
problems. The author also remarked that fairly high accuracy can also be achieved in the 
approximate solution of the initial boundary-value problem fat least compared with the 
results in /2/). 

It was suggested in /6/ that the solution U* (p) should be chosen in a special manner, 
requiring that relation T,U* = 0 hold at the boundary. Then formula (6) will become 
simpler and take the form 

*Romanchak V.M. Analysis of the stress state in the plane elastic problem for regions with 
corner points, based on the complex Betti formula. Candidate Dissertation. Minsk, 1986. 
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CB = 5 U* (q) F(q) ds 
S 

In order to construct the solution V*(p), we must choose a particular Solution UC (P) 
which has a given singularity at the corner point, and construct a compensating solution 
U** (lJ* = P-j- U**). We chose, as a particular solution, solution (4) multiplied by the 
truncation, i.e. the infinity differentiable function f(r) equal to unity for r< s (s 
is a certain small number) and equal to zero for r>2e, Then in order to construct the 
compensating solution we must solve the inhomogeneous boundary-value problem. Introduction 
of the truncation takes care of the problem of attaining the corner point at infinity. 

The above method was used in /l/ to construct the SIF in the case when the corner point 
could be reached at infinity, and this made the introduction of truncation unnecessary. 

Below we discuss the problem of realizing the method proposed in /6/ in the case when 
the corner point is not attainable at infinity and the solution proposed by Romanchak is 
used as a particular solution (see the footnote). 

We choose any point a situated outside the region which can be connected with the zero 
point (the corner point) by a contour lying completely outside D. Regarding this contour 
as a cut in the complex plane, we form the solution of the problem of the theory of elasticity 
in terms of the following single-valued functions: 

cp" (z) = z+* (z - a)+,~, 4 (z) = A_& (z - a)‘* (8) 

The constants h, and A-, are found, as before, from Eq.(2j. It should be noted 
that it is appropriate not to treat (8) as a solution for the outside of a crescent with tips 
at a and at zero, and to speak of a solution for a plane with a cut connecting these points. 
The choice of the point a can be fairly arbitrary, but its positioning near the boundary or 
near the zero point would result in computational complications in the course of constructing 
the compensating solution. 

We will use (8) to determine, at the points of the boundary, the components of the 
stress vector tj** for the solution u**. Thus we arrive at the second fundamental 
boundary-value problem of the theory of elasticity. It is best solved using the singular 
integral equation obtained directly of the form /9/ 

Ffj (6 4) = - 4s (i _ v) ?l 
{ 
(1 - 24 h%f’-- q%,) -t 

C (l--v)%,+ *](%t--4) 
5X = 5 - e’, %$ = y - y’, r = I q - 4’ I 

(4 are direction cosines). The expressions for the kernels given here are for the case of 
plane deformation. 

The choice of Eqs.(91 is governed by the fact that it is the displacements that represent 
the function required, which means that no additional computations are needed when turning 
to formula (7). Eq.f9) is solved by the method of successive approximations, and the algorithm 
for solving the singular integrals is simplified by converting them to improper integrals by 
means of regular representations /lo/. The algorithm is realized in the form of a universal 
progran written in Fortran, with the points of the boundary specified in a discrete manner 
(the cut is situated along the real axis). 

In the case of singly connected regions the corner point can always be reached at 
infinity, therefore it is best to consider the above method for the multiconnected regions. 
The problem for a region extending to infinity can be studied using the passage to the limit 
when the external contour is a sufficient distance away, and the conditions for the Somigliana 
identity to be valid (the integral along the outer contour vanishes) should be monitored. 
If the principal force vector applied to internal contours is equal to zero, then solution 
(8) can be used and in the general case we must ensure that the auxiliary solution UC tends 
to zero at infinity. This can be achieved in various ways, for example by passing to 
modifications of representation (8) using the relation 

or 
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Determination of the SIF &r requires that a non-symmetric asymptotic form be introduced. 
To do this we use the solution 

'pD (e) = is-k (2 - 12)~ - i, q0 (z) = iA& (2 - a)& - Ai (10) 

with parameters h and A given by the equations 

sin ZXec - a sin 2a = 0, A = cos 2ha - h cm 2a ($1) 

We will now consider a method of computing the integral (7). The displacements can be 
represented in the form of the sum of two displacements, one of which (uO) is given in 
explicit form and tends to infinity at the zero point, and the other (U**) is determined 
in the course of solving the integral equation and is bounded everywhere. Therefore, it is 
best to evaluate the integrals in (7) separately for each term. For the displacement U** 
we can use the discretization introduced in the course of solving the integral equation. 
Three zones must be introduced for the displacement U*. In the immediate neighbourbood of 
the corner point the computations must be carried out analytically, neglecting the change in 
the multipliers of the power function. Next we have a zone in which we introduce a fairly 
fine discretization. In the last zone we can use the discretization introduced in the course 
of solving the integral equation. If the integral is solved at once, then the displacements 
at additional points of the contour must be found by interpolation. 

We shall illustrate the effectiveness of the proposed algorithm by considering the 
problem for the outside of a square. We assume that Poisson's ratio is equal to 0.3, and 
that the modulus of elasticity is unity. The diagonal of the square is equal to 2, and is 
positioned so that one end of it lies at zero, and the other at -2. The point‘a lies at -1 
The computations were carried out for the plane stress state and for plane deformation. The 
angle 2~ = 1.5s, and, in accordance with (2), we have li, = 0.5445, A, =0.8338. The integral 
B = 19.75 for plane deformation, and 21.52 for the plane state of stress. 

Initially we considered the problems for which the SIF were known. One of these 
solutions is given by the function 

cp (2) = 2x* (s + i)-'l> m(z) = A&' (z-i- I)-""' (12) 

Then the coefficient C= 1. Calculations the right-hand side of Eq.(?) gave values of 
C= 6.9919, for plane deformation.and c= 1.6005 for the plane state of stress. Computations 
were also carried out for the problem in which the SIF is equal to zero. Such a solution is 
given, for example, by the functions T(z)= 6 and +(a)==&+ 1)". The values of the coefficient 
C obtained were 0.0144, 0.0107 and 0.0092, respectively, when the contour was divided into 
216, 260 and 320 segments. 

In addition to the model problems discussed above, we carried out the computations for 
the case when a hydrostatic load (of unit magnitude) was applied to the contour, and in one 
case the load was specified over the whole contour, while in the other case the load was 
applied to the sides adjacent to the corner point. The following values were obtained for 
the coefficient A1 :0.648(0.640) and 0.6i3(0.590), with the values in brackets referring to the 
plane state of stress. 

Below we give the values of the displacement components IJ* at points on two sides of 
the square (in the upper half-plane) for plane deformation and (in brackets) for the plane 
state of stress. 

z -2.0 -1.8 
Y 0 0.2 

u,* -0,579 --0.7# 
(-0.752) (-0.891) 

v,* (0") 0.568 
(0.560) 

5 -0.7 -0.5 
Y 0.7 0.5 
u* * -1.515 -1.711 

(e-1.773) (--1.958) 
UV * 2.827 3.589 

(3.108) (4.646) 

--9.15 

0.85 
-0.997 
(-1.209) 
1.474 
(1.621) 
-0.2 
0.2 

-2,466 
(-2.818) 
6.569 
(7.243) 

-1.05 -i .o -0.95 

0.95 1.0 0.95 

-1.119 --1.262 --1.350 
(--1.343) (-1.525) (--1.597) 

1.725 1.925 2.075 
(1.896) (2.114) (2.287) 
-0.05 -0.01 -0.0933 
0.05 0.01 a.6633 

-4.753 -20.86 --19.45 
(-5.331) (-12.04) (21.46) 
14.61 35.40 64.46 
(16.06) (36-9@ (70.64) 

For points in the lower half-plane the component U,* retains its value, but ff,* 
changes its sign. 
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A PSEIJDOMACROCRACK IN AN ANISOTROPIC BODY* 

V.V. TVARDOVSKII 

Moscow 

(Received 13 July 1990) 

A pseudomacrocrack representing the usual crack in a composite material 
or in an inhomogeneous body is considered. The crack edges are pulled 
together by the non-disintegrated elements of the structure, and 
interact linearly. It is shown that in this case normal extension is 
sufficient for a non-zero value of the stress intensity factor Air to 
occur at its tip. The problem is reduced to the Prandtl integro- 
differential vector equation for which an analytic solution is obtained. 
A relation is derived connecting the stress intensity factors A,, KII. 
with the stiffness of the joints between the edges, the elastic 
characteristics of the surrounding material and the external loads. 

A classical example of a peseudomacrocrack is the macrocrack in a composite material 
consisting of a brittle ceramic matrix and tensile fibres pulling its edges together and 
preventing it from enlarging /I., 21. A model of a pseudomacrocrack in an elastic, linearly 
anisotropic body in conditions of plane deformation was discussed in /3/. Here the relation 
between the stresses transmitted from the edge to the edge vnr and the opening of the edges 
WI, was assumed to be linear: 

% (1) = kljq (x) (0.1) 

where k;j is a symmetric tensor. When the tensor kit is diagonal and the plane of elastic 
symmetry coincides with the plane of the pseudomacrocrack, the problem splits into two 
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